Portable PSK Has Finally Arrived

Milt Cram, W8NUE, and George Heron, N2APB

You say you haven’t even tried PSK31 yet? Of all the HF digital modes, this is one of the best, especially considering the mediocre band conditions we’re experiencing today. With a few watts and a wire, you can enjoy PSK31 keyboard conversations with stations throughout the country. There is plenty of DX to be had as well.

If you’ve been putting off PSK31 because you lacked a computer, you’ve just run out of excuses. The NUE-PSK modem doesn’t require a computer — just plug it into your SSB transceiver’s mic and speaker jacks, plug in a standard PS2 keyboard, and you’re on the air.

Many modern transceivers also provide fixed-level audio inputs and outputs using DATA or AUX connectors. These connectors often include AFSK Out, Audio In and PTT (Push To Talk) lines — just what the digital modem needs. If your radio features this convenient multipurpose port, you’re in luck. It will greatly simplify the task of connecting the NUE-PSK.

The battery-operated NUE-PSK digital modem fits in the palm of your hand and can provide hours of digital communications enjoyment.

PSK31: The King of HF Digital

Unless you’ve been asleep for the past eight years, you probably know that PSK31 is one of the hottest digital modes on the airwaves. Much like instant messaging (IM) over the Internet and text messaging over cell phone networks, PSK31 provides hams the same type of peer connectivity over the HF bands — and it is still growing in popularity as technology marches on.

PSK31 first burst onto the Amateur Radio scene in 1998 with some intrepid experimenters providing complex hardware and software designs for this new digital mode. These early PSK experiments required digital signal processing development kits and other hardware. Not long afterward, however, technology improvements enabled some other smart hams, such as Peter Martinez, G3PLX, to find ways to use the common PC and sound card to provide the required computing power and convenient user terminal I/O. Steve Ford, WB8IMY, described the excitement in QST articles (1999 and 2000), extolling the virtues of this fun new mode. Design veteran Dave Benson, K1SWL (ex-NN1G), even designed a whole series of dedicated, single-board/single-band low-power (QRP) transceivers for PSK31.

But even with these clever hardware and software innovations, there was yet room for improvement. The computer and its sound card still form the core of all present-day PSK31 stations. The sound card functions as the modem and the computer runs the necessary PSK31 software. The problem with this arrangement is portability. Even if you resort to using a laptop computer to take your PSK31 to the field, you are limited to the operating time that the laptop battery provides. Standard-sized laptops are also bulky and their LCD screens are difficult to see in bright sunlight.

And portable operating aside, what about hams who do not own computers? Even today there is still a percentage of the amateur community that does not have access to computer hardware. These people are excluded from HF digital operating entirely.

With these challenges in mind, we decided that we wanted to invent a PSK system that did not require the use of a PC in any form. We wanted something that would be portable and compatible with both standard and QRP transceivers, providing many hours of operation from a battery (unlike the 2 or 3 hours you might squeeze out of a typical laptop).

Two Flavors of PSK

PSK31 is one of many modulation techniques within the “phase shift keying” family of communication. PSK31 operates at 31.25 bits/second, while other speeds may be achieved using variations to the software algorithm. PSK is perhaps more accurately termed BPSK, for bi-phase shift keying, whereby two distinct phase states separated by 180° are used to convey the information. Four states may also be encoded/decoded, as is done with QPSK (quad-phase shift keying), in order to provide higher speeds with greater error correction ability.

The NUE-PSK digital modem can currently support the digital modes of BPSK and QPSK, and will soon support MFSK and RTTY.

The NUE-PSK digital modem can currently support the digital modes of BPSK and QPSK, and will soon support MFSK and RTTY.

Design Overview

At the heart of the NUE-PSK digital

The NUE-PSK modem sends and receives PSK-31, with more modes to come, without requiring a computer. Any PS/2 keyboard can be used. The NUE-PSK is shown here with the lightweight, portable Parallax Mini-Keyboard, which is available from retailers for $19.95 (or directly from Parallax at www.parallax.com).
Using the NUE-PSK

When the NUE-PSK is switched on, the LCD shows a graphical spectrum representation of signals in the band. A cursor in the signal portion of the display may be moved up or down the band by turning a rotary dial on the modem, or by using the arrow keys on the keyboard. This tuning method allows you to move to select the PSK signal you wish to monitor. As soon as the cursor approaches a PSK31 signal, the software automatically locks onto it and the decoded characters of the signal being received start displaying on the lower LCD.

Now, suppose you want to answer a station’s CQ, or call him after his conversation ends. Just press the F12 key to go into transmit mode and begin typing! Your typed characters are shown in a new line of the display and the PSK31 audio tones are sent character-by-character over to your rig that has been automatically set to transmit mode. When you’re done with your reply, pressing F12 again puts the rig back into receive and his typed reply will show character-by-character in your display…just as if you were instant messaging!

Just like the popular PC applications for PSK31, the software in the NUE-PSK digital modem provides numerous menu options, hot key short cuts, and time-saving buffers in memory to allow you to have an easy-and-effective QSO. For example, these features make it easy to record macros, and change various setup features like mode, AFC On/Off, CW ID, etc. Its internal memory is used for storage of setup information and macros so that they will be retained when power is removed from the modem.

Conclusion

We already have a long list of additional features planned, including extra digital modes (MFSK, RTTY), improved tuning and sensitivity, and a super-portable mode using a CW paddle to input data and Morse tones for output. The portable evolution keeps on coming!

The NUE-PSK digital modem is used regularly by both authors and has seen intense operation during QRP contests during the past year. It is a great pleasure to be able to operate PSK31 out in the field with such little reliance on a conventional PC or laptop. This portable PSK digital modem truly helps one enjoy the overall communications experience.

Some truly outstanding opportunities exist for using the NUE-PSK digital modem in the field of emergency communications. The modem’s suitability for field portability — battery-operated, small, lightweight, integrated and no-PC design — is a fabulous component for state, local and ARES communications use during weather- and nature-related disaster communications. The PSK31 mode excels in establishing low-power communications, much more efficient than voice, and is able to be quickly and effectively used by any emergency personnel that can type at a keyboard.

We hope you enjoy the NUE-PSK digital modem. We are indebted to the pioneering efforts of others before us here in the field of PSK31, especially the avid experimenters of the Austin QRP Club. Let us know how it works out and we’ll be looking for you on the air!

Milt Cram, W8NUE, was first licensed in 1953 as WN8NUE and has held several calls (minus the “N”) with an Amateur Extra license. He is a long-time homebrewer and member of the Austin QRP Club, enjoying operating low power and the digital modes on HF. Milt holds BEE, MS and PhD degrees in electrical engineering from Georgia Tech and comes from a family of hams (dad, Ernie, W8JKX [SK], great uncle, Oz, W1JUJ [SK], and son, Marc KC5RWZ). You can reach him at 9807 Vista View Dr, Austin, TX 78750 or at w8nue@arrl.net.

George Heron, N2APB, has been a technology manager in the northeastern US for more than three decades. He is the chief scientist for McAfee, helping to develop new security products and technologies to protect users from all forms of computer malware. First licensed in 1968, George is an avid homebrewer in RF and digital circuits, with a special interest in DSP and microcontroller applications to QRP. He leads the New Jersey QRP and the American QRP clubs and can be reached at 2419 Feather Mae Ct, Forest Hill, MD 21050, or at n2apb@amsat.org.